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ABSTRACT 

Let ¢ and ~ be two given random closed sets in a locally compact second 

countable topological space S. (They need not be based on the same 

probability space.) The main result gives necessary and sufficient condi- 

tions on the distributions of ¢ and ~, for the existence of two random 

closed sets ¢ and ~, based on the same probability space and such that  

their distributions coincide with those of ¢ and ~, resp., and ¢ C ~ a.s. 

This coupling result tells us in particular when a probability distribution 

on S is selectionable w.r.t. (the distribution of) a random closed set. 

An existence result for realizable thinnings of a simple point process is 

obtained by specializing it to supports of random measures. 

The coupling result is extended to random variables in a eountably based 

continuous poset. As examples we mention various kinds of random ca- 

pacities - -  in particular random measures - -  and random compact (sat- 

urated) sets. Moreover, the extended result tells us when a probability 

distribution on S is seleetionable w.r.t, the distribution of a random 

compact (saturated) set. 
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1. In t roduc t ion  

We are concerned with the problem of finding an ordered coupling of two given 

random sets ¢ and qo in a given topological space S. They need not be based on 

the same probability space. Denote by a= equality in distribution (i.e., law). By 

a coupling of ¢ and qo we mean a pair (¢, ~) of random subsets of S which 

are based on the same probability space, and such that ¢ a= ¢ and ~ a__ ~. A 

non-interesting example of a coupling is obtained by taking ¢, ~ independent. 

A coupling (¢, qb) of ¢ and ~ will be said to be ordered ,  if ¢ c_C_ ~ a.s. 

The existence of an ordered coupling of ¢ and q0 will be denoted ¢ _Cst ~ - -  

the subscript st indicating that it is a stochastic ordering, i.e., an ordering of 

probability distributions. 

We now state our main result. In it, and subsequently, all underlying prob- 

ability measures axe denoted P. Note that we call a topological space locally 

compac t ,  if every point has a neighborhood basis of compact sets. This defini- 

tion may seem peculiar or unusual, but is easily recognized as the basic property 

of locally compact Hansdorff spaces. 

THEOREM A: et S be a locally compact, second countable topological space, 

and consider two random dosed sets ¢ and ~ in S. 

(a) Then ¢ Cst ~ if, and only if, the inequality 

(1) P {¢ N Bi ¢ $} _< P ~-~ (~ f3 Bi # 0} 
i=1 i=1 

holds true for n = 1,2, . . .  and open Bi. 
(b) Suppose S in addition is sober. Then ¢ C_st ~ if, and only if, (1) holds 

true for n = 1,2, . . .  and compact Bi. 
(c) Suppose S in addition is Hausdorff. Then ¢ C_st ~ if, and only if, (1) holds 

true for n = 1,2, . . .  and closed Bi. 

Part (a) of the theorem depends only on the collection of open subsets of S. 

Thus that equivalence holds true whenever the topology of 5' is order isomorphic 

to the topology of a locally compact second countable space. This is known 

to hold for any set provided with a continuous countably generated topology 

(cf. Hofmann and Mislove [5] and the references therein). In Section 2. we 

have collected some background material on topology, continuous posets (i.e., 

partially ordered sets), random sets and random variables in continuous posets. 
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Let us only note at this point that Hausdorff spaces are sober, so that all three 

parts of the theorem hold true if S is a locally compact Polish space. 

We give two proofs of Theorem A. The first is given in Section 3.. It is 

based on a particular case of a well-known theorem of Strassen [19], see Ligget 

[1O, p. 72], which we state in Section 2.. Rather surprisingly it turns out that 

this particular case of Strassen's theorem is a straightforward consequence of 

Theorem A. So Theorem A and some of its corollaries are indeed equivalent to 

this particular case of Strassen's theorem. It is therefore of theoretical interest 

to prove Theorem A without appealing to Strassen's theorem. This is done in 

Section 5.. 

Theorem A has interesting applications, some of which we now outline. Refer 

to Section 4. for details. If S in addition to being locally compact and second 

countable, also is Hausdorff, then any simple point process ~ on S may be 

identified with its support 

supp  = e s :  > 0}, 

which is a locally finite random closed set in S. Moreover, if q is a simple point 

process, then t / <  ~ (in the sense that t/(B) < ~(B) for Borel sets B C S) if, 

and only if, supp 7} C supp ~. So Theorem A also yields an existence theorem 

for so called realizable thinnings (cf. Rolski and Szekli [16, Definition 1]) of 

simple point processes. Our result, which we formulate in a larger generality for 

supports of random measures and mean is interesting from practical as well as 

theoretical considerations, seems to be new. 

In general it is not enough in Theorem A to require (1) to hold for n = 1 

only. Section 3. contains a simple counter example in which S is a two point set 

provided with the discrete topology. 

However, if ~ equals the singleton closure of some random element ~ in S, 

a simple argument shows that (1) holds for all n >_ 1 if it holds for n = 1. 

By pursuing this, a characterization of the probability distributions on S that 

are selectionable w.r.t. (the distribution of) a given random closed set ~, is 

obtained. Our result, which generalizes a theorem of Artstein [I], requires S 

to be sober (in addition to being locally compact, second countable), because 

otherwise there need not be a random element ~ in S satisfying {~}- = ¢, if 

(¢,  ~) is an ordered coupling of ¢ = {~}- and ~, so satisfies ¢ C_ ~ a.s. 

Artstein (op. cit.) showed the characterization for locally compact Polish S. 
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Recently, Ross [17] extended it to Hausdorff regular spaces. The possibility to 

go beyond the Hausdorff setting in the locally compact case is interesting. 

The existence result for selectionable distributions has a coupling theorem for 

random elements in S as a further corollary, since on every sober space there is 

a partial order (often called the specialization order), which in a certain sense 

is consistent with the topology. At first sight this coupling result may seem 

obvious and useless. However, it has the particular case of Strassen's theorem, 

which we used in our first proof of Theorem A, as an immediate consequence. 

Another striking consequence of it is a coupling result for random variables in 

a countably generated continuous poser. This result extends Theorem A, since 

every random closed set qa in a space S provided with a countably generated 

continuous topology ~, may be identified with its complement S \ T, which is a 

random variable in ~. 

This coupling result for random variables in a continuous poset has other 

consequences than Theorem A. Among them we first note a known result on the 

stochastic ordering of random measures due to Rolski and Szekli [16, Theorem 

1], which we prefer to formulate in the more general setting of random capacities. 

It is of no value to specialize this result further to simple point processes, since 

the already mentioned thinning theorem is much sharper. 

Note next that a random compact set in a locally compact Polish space S 

is a random variable in its collection ]C of compact subsets - -  the latter being 

a countably generated continuous poset. So the coupling theorem for random 

variables in such posers, yields a characterization of ¢ Cst ~ when ¢ and ~ are 

random compact sets in S. This result may of course be applied to the case 

when !b is of the form {~}. We then obtain Theorem 2.1 of Artstein [1], which 

tells us exactly when a probability distribution on S is selectionable w.r.t. ~. 

Needless to say, we formulate these results also for non-Hausdorff spaces S. 

Finally, in Section 5. we give an independent proof of a coupling theorem 

for random variables in a countably generated continuous lattice, from which 

Theorem A follows immediately (because as we already remarked, any random 

closed set may be identified with a random variable in a continuous lattice). 

This is our second proof of Theorem A. 
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2. Preliminaries, notations 

Let S be a topological space. Denote by G, ~" and K: its collections of open, 

closed and compact subsets. Note that we do not assume S to be H a u s d o r f f -  

thus cannot promise that /C is closed for more than finite (non-empty) unions, 

i.e., if K1,K2 E K: then K1 U/(2 E K:. Write A ° and A -  for the interior and 

closure of A C S. 

Definition 2.1: Let A C_ S. The saturation of A is the set 

satA = N { G  E G:  A C G}, 

and A is called s a t u r a t e d ,  if A = sat A. I 

By part (a) of the following lemma, sat sat A = sat A, so sat A is saturated. 

The lemma moreover shows that every subset of a Tvspace  is saturated. Its 

proof is simple, hence omitted. 

LEMMA 2.2: Let A C S, G E ~ ands E S. Then thefollowingthreeequivedences 

hold: 

(a) A C_ G if and only if sat A C_ G; 

(b) s sat A if and only if { s } -  n sat A # and 

(c) A is saturated//and only if s E A follows from {s}-  O sa tA ¢ ¢. 

Also the proof of the next result can safely be omitted. 

LEMMA 2.3: Let K C_ S. Then K E/C if and only if sat K E E. 

Write sat/(: = { sa tK  : K E K}. Lemma 2.3 tells us that satK: C K:, so satK: 

equals the collection of compact saturated subsets of S. By a previous remark, 

sat/C = E if S is T1. 

We now single out a very important  class of sets in S. 

De/inition 2.4: A set I _C S is said to be i r r educ ib l e ,  if whenever I C F U H 

for some F, H E .T, we have I C_ F or I C_ H. I 

Write 2" for the collection of all non-empty irreducible closed sets in S. It is 

obvious that all singleton closures are irreducible (i.e., {s}-  E 2" for all s E S). 

The definition of a sober space goes in the converse direction. 
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Definition 2.5: A topological space S is called s o b e r  if every non-empty irre- 

ducible closed subset is the singleton closure of a unique point. I 

That  is, S is defined to be sober if the mapping s ~ {s}-  is a bijection 

between S and 2". Thus any sober S may be embedded into ~ ,  and identified in 

~- with 2". Note moreover that any sober space is To (which is just another way 

of saying that the mapping above is an injection). 

It is a nice exercise to show that an irreducible closed subset of a Hausdorff 

space cannot contain more than one point. Thus all Hausdorff spaces are sober. 

We next define random closed sets in S. 

Definition 2.6: An ~-valued mapping ~, defined on some probability space l~, 

will be said to be a r a n d o m  closed set  in S, if 

n G # 0} := {,o c f i :   0(w) n G # 0} 

is a measurable event for all G E G. I 

It may be a good idea to skip the remaining part of this section and instead 

refer back to it when the need arises. 

We next recall some basic facts for continuous posets. Our main reference 

is Lawson [8]. The monograph Gierz, Hofmann, Keimel, Lawson, Mislove and 

Scott [4] contains a lot of important information. Hofmann and Mislove [5] 

discusses the connection between local compactness and continuity for posets. 

See also the survey article Lawson [9]. 

Let now L be a poset. Denote its order by _<. For x E L, write Tx = {y E L : 

x < y }  a n d ~ x - - - { y E L : y _ < x } .  

Definition 2.7: We say L is a s emi - l a t t i ce  if every pair x , y  E L has a greatest 

lower bound x A y E L. A semi-lattice L is said to be a l a t t i ce  if every pair 

x, y E L has a least upper bound x V y E L. I 

Definition 2.8: A non-empty set D C_ L is called dlrected~ if for all x, y E 

D, D N T x n Ty ~ 0. F i l t e r e d  sets are analogously defined by replacing T with 

~, and by a f i l ter  on L, we mean a non-empty set F C_ L, which is filtered and 

u p p e r  in the sense that Tx _c F whenever x E F. 

We call L u p - c o m p l e t e  if every directed set D C_ L has a least upper bound 

V O e L .  I 
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Now take L up-complete. 

Definition 2.9: Let x, y E L. Say x is way  b e l o w  y, and write x << y, if for 

every directed D C_ L, with y _< VD, we have x _< d for some d E D. | 

Definition 2.10: If for each x E L, the set {y E L : y << x} is directed and its 

least upper  bound is x, then L is said to be a c o n t i n u o u s  p o s e r .  A c o n t i n u o u s  

( s emi - )  l a t t i ce  is a (semi-) lattice which is continuous. I 

Gierz et al. [4] have a slightly narrower definition of a continuous lattice. A 

continuous lattice in our sense is a continuous lattice in their sense if it contains 

a least member.  

Definition 2.11: The continuous poset L is said to be c o u n t a b l y  b a s e d  if 

there exists a countable set Q c_ L, such that  z << y implies the existence of a 

z E Q with x < z < y. I 

If S is locally compact and second countable, then its collection ~ of open 

sets is a countably generated continuous lattice. This is easy to see. 

Let now L be a continuous poser. 

Definition 2.12: A set U C L is said to be S c o t t  open~ if it is upper  and 

D n U .~ 0 whenever D C_ L is directed and V D  E U. An o p e n  f i l ter  is a filter 

which is Scott open. I 

The collection of Scott open sets in L is denoted Scott L. Its subcollection of 

open filters is denoted OFilt L. It is easy to see that  OFilt L is up-complete. Law- 

son [8, Section 3] characterizes its way below relation, and shows that  OFilt L is 

a continuous poset. Moreover, a se t /4  C OFilt L is an open filter if and only if 

there is a unique x E L such that  U = {F  E OFilt L : x E F}. So OFilt OFilt L 

is isomorphic to L. This is part  of the so called Lawson duality. 

It is not hard to see tha t  Scott L is closed for finite intersections and arbi trary 

unions, thus is a topology on L. 

Definition 2.13: The Scott topology on L is the topology formed by the 

Scott open sets. I 

We also need some information on random variables in L. 
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Definition 2.14: By a r a n d o m  variable in L, we mean an L-valued mapping 

defined on some probability space ~, such that {x _< ~} is measurable for all 

x E L .  | 

It is easy to see that ~ : f/---} L is a random variable if and only if {( E F} 

is measurable for all F E OFilt L, provided that L is countably generated (cf. 

Norberg [13]). 

If G is a continuous lattice, then so is ~" w.r.t, the exclusion order __D. A random 

closed set in S is a random variable in Y and conversely. This is obvious from 

the definitions. Many of the results for random closed sets in locally compact, 

second countable and sober spaces, have generalizations to random variables in 

countably generated continuous posets. (See Norberg [13].) 

We end this section with a description of the result of Strassen [19], on which 

our first proof of Theorem A is based. Let X and Y be two measurable spaces. 

Let ~_ be a relation on X x Y. Recall that its g r a p h  is the set {(x, y) E X x Y : 

x ~_ y}. First, however, we generalize the notation Cst. 

Definition 2.15: Consider two random elements ( and q in X and Y. They need 

not be defined on the same probability space. By a coupl ing of ~ and T}, we 

mean a random element (~, 5) in X x Y (w.r.t. the product a-field) satisfying 
a ~ a n d ~  d = = 7/. We let ~ --st 7/ denote the existence of a coupling (~, 7)) of 

and ~/satisfying ~ ~- ~ a.s. | 

Recall that a topological space is called Pol ish  if there is a complete and 

separable metric generating its topology. 

TREOREM B (Strassen): Let X be a compact Polish space, partially ordered 

by the relation <_, and let ~ and 71 be two random elements in X. Suppose the 

graph of <- is closed in the product topology. Then ~ <st ~ if and only if 

Eh(~) <_ Eh(y) 

for non-negative bounded functions h, which are continuous and increasing in 

the usual sense that h(x) <_ h(y) for x, y E X, x <- y. 

Proof: See Ligget [10, p. 72]. | 
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3. P r o o f  o f  T h e o r e m  A and  a counter example 

Recall that S is assumed to be a locally compact second countable topological 

space, and that ¢ and ~ are two given random closed sets in S. Assume that 

f i  - (2) P {0 n G~ # 0} < P n {~ n G~ # 0} 
i=1 i=1 

holds true for n = 1, 2 , . . .  and Gi E G. (This is clearly a consequence of ¢ C_st ~.) 

Hofmann and Mislove [5, Section 1] show that G is order-isomorphic to the 

topology of a sober space, so we may (and will) assume below that S is sober. Let 

us recall from Section 2. that all Hausdorff spaces are sober, and that sat K: = K: 

if S is T1, in particular Hausdorff. 

Our first task is to show that 

- f l  (3) P N { ¢ n K ~ # 0 } < P  {~nK~#0} 
i=1 i=1 

holds true for n = 1, 2 , . . .  and Ki E/C. (For Hausdorff-S, this is easy.) We rely 

on results connecting locally compact spaces with spaces having a continuous 

topology. Inequality (3) follows directly from the following two lemmata (which 

are standard facts if S is Hausdorif). 

LEMMA 3.1: Suppose that S is locally compact, second countable and sober. 

I l K  E sat K:, then there are K1,K2, . . .  E sat/(: such that Kn+l C_ K ° for a/l n, 

and Kn J, K. 

LEMMA 3.2: Suppose that S is locally compact, second countable and sober. 

Take K, K I ,K2 , . . .  E satIC and G E G. I f  Kn ~ K C G, then Kn C G for some 

sutt~cientIy large n. 

Proofs: The collection G is a countably based continuous lattice. Refer to Hof- 

mann and Mislove [5, Section 2] for a proof of the fact that sat/C is a continuous 

semi-lattice w.r.t, the exclusion order, which is isomorphic to the collection of 

open filters on ~. Conclude by Norberg [13, Proposition 3.1] that s a t e  is count- 

ably based. Lemma 3.1 now follows by combining the fact that K1 << /(2 in 

sat/C, if, and only if, K2 C_ K~, with Lawson's [8, Proposition 2.2] characteri- 

zation of the way below relation. Lemma 3.2 follows since any set of the form 

{K E sat/(: : K C_ G} is an open filter if G E ~. II 
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The collection of all sets of the form 

{F E ~ :  F t q K  =I~}, 

where K E E,  is closed for finite intersections (since ,E is closed for finite unions). 

Thus it may serve as a base for a topology on 9 r ,  which we shall refer to as the 

d e c r e a s i n g  topology. One reason for this choice of terminology is the necessity 

of the first implication of the following lemma. 

LEMMA 3.3: Suppose S is locally compact, second countable and sober. Let 

II C J:. Then U is open in the decreasing topology, if, and only if, the following 

two implications hold true: 

~ g H C F E l l  =~ H E U ;  

J: g Fn ~ F E ll ~ 3 n : F , E / 4 .  

Proof: The necessity of the two implications is trivial, so let us assume them 

true. We need only consider the case S ¢ U. Suppose/4 is not open. Then 

there is an F E H such that if {H E .~" : H O K = O} C_/4 for some K E /C, 

then F n K # 9. For each s E F ¢ select a pair (G, ,K,)  E ~ x/C such that 

s E Gs c_ Ks C F ¢. Then F c = Usef¢ Gs. By Lindelhf's Theorem (see, e.g., 

[18]), there are s l , s 2 , . . .  E F ¢ such that F ¢ = U,, G , . .  Hence Ni~l V~, J. F, 

n = U i = I  Ksi. Then K E K: so we must have Ni=l G~ E / 4  for some n. Put  K n 

and F M K = 9. Take H E .~', H f3 K = 9. Then Ui"=l Gs~ c_ K c H c. Thus, 

H c ~i"=1 G~, E /4, which implies H E L/. This implies a contradiction from 

which the sufficiency of the two implications follows. I 

We give two proofs of the next lemma. The first, which is valid for Hausdorff- 

S only, uses standard (routine) compactness argumentation. The second, which 

relies on the already mentioned connection between local compactness and con- 

tinuity for posers, incidentally also proves Lemma 3.3. 

LEMMA 3.4: Suppose S is locally compact, second countable and sober. The 

decreasing topology on 5 r is second countable. 

Proofs: As noted we first consider the particular case of a Hausdorff-S. Let 

~b ~ ~ be a countable base consisting of open sets with compact closure. Sup- 

pose F CI K = 0, where F E ~" and K E E. Then K _C F c and we may choose 
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finitely many Gi E ~b such that K C Ui Gi c_ Ui G.~ c_ F e. This means that 

F N Ui  G~- = 0, and establishes the result in the Hausdorff case. 

In the general case when S need not be Hausdorff, we argue as follows. The 

collection 2- is a countably based continuous lattice. Conclude by Hofmann 

and Mislove [5, Theorem 2.16] that the decreasing topology is generated by the 

collection of open filters on 2-. It is well-known (see, e.g., Lawson [8, Proposition 

2.3]) that the open filters generate the Scott topology of 2-. So the decreasing 

topology is identical to the Scott topology. Finally, conclude by Norberg [13, 

Proposition 3.1] that the Scott topology is second countable. I 

We next provide the collection 2- of closed sets in S with the coarsest topology 

containing the decreasing topology and all sets of the form 

{F E 2 - : F N G  #O}, 

where G E G, first studied by Fell [3]. In the context of continuous lattices this 

topology is called the Lawson topology. There the next result is well-known. 

See Gierz et al. [4, Theorem III.l.10]. Matheron [11, Theorem 1-2-1] treats the 

Hausdorff case. 

PROPOSITION 3.5: Suppose S is locedly compact, second countable and sober. 
Then 2- is a compact Polish space. 

Proof: Fell (op. cit.) shows that 2- is a compact Hansdorff space. To see that 2- 

is second countable, use Lemma 3.4 and the fact that S is so. Standard results 

on metrizability (see e.g. Simmons [18]) now shows that 2- is Polish. I 

Let /4 C 2- be open and decreasing in the sense of the first implication of 

Lemma 3.3. Suppose 2- 9 F,, J. F E b/. Then Fn --+ F. Hence F,, E U for 

sufficiently large n, and we may conclude by Lemma 3.3 that/4 is open in the 

decreasing topology. 

By Lemma 3.4, 

b l = U { F  e 2- : F n K ,  =O} 
n 

for some K1, K2,. . .  E K:. So 

n 

P{¢ ¢ U} = limP N { ¢  M Ki ¢ O} <_ linmP N{~o fl gi  ¢ o} = P{qo C U}, 
i = 1  i = 1  
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follows by (3). 

We have shown that 

P{¢  e 7"/} < P{~p E 7"/} 

holds true whenever 7"/ C_ Jr is closed and its indicator In  is increasing. By 

a routine extension, cf. e.g. Kamae, Krengel and O'Brien [6], this implies that 

Eh(¢) <_ Eh(~) holds true for all bounded increasing upper semicontinuous 

non-negative functions h on ~ .  

The next result may be seen as a consequence of the well-known fact that any 

continuous lattice has closed order. See Gierz et al. [4, Theorem III.2.4 (and 

III.2.9)]. We give a direct proof. 

LEMMA 3.6: Suppose S is locally compact, second countable and sober. Then 

the graph o[ C_ is closed in the product topology. 

Proof: Take (H,F),(H1,F1),(H~,F2),... e .~" x ~', such that H,, ~ H, F ,  ---, 

F and Hn C_ Fn for all n. To see that H C F, let s ¢ F. By local compactness, 

s E G C_ K C_ F c for some G E ~ and K E )C. Clearly F A K  = 0. Hence 

Fn A K = 0 for sufficiently large n. Hence Hn A G = 0 for infinitely many n, 

showing H A G = 0. Hence s tg H. | 

Now ¢ Cst q0 follows by Strassen's Theorem B. This proves parts (a) and (b) 

of Theorem A - -  part (c), which presumes that S is Hausdorff, follows also, 

since in this case K C ~-. Maybe we should point out that in this case any event 

of the form {qa A F # 0} is measurable if F _C S is closed. See Matheron [11, p. 

301. 
We conclude the section with a promised counter example. 

Example 1: Provide {a, b} with the discrete topology (in which all subsets are 

open) and let the distributions of ¢ and ~ be given by the probabilities 

P{¢  = 0} = 2/3, P{¢  = {a,b}} = 1/3 

and 

P{qa = {a}} = P{qa = {b}} = 3/8, P{~ = {a,b}} = 1/4. 

Then, as the reader easily verifies by direct computation, 

P{¢  AA ~ 0} _< P{~,AA ¢ 0} 
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for all A C_ {a, b}, while 

P{¢  = {a,b}} > P{T = {a,b}}. 

The latter contradicts of course ¢ C_st ~. I 

253 

4. Some  app l i ca t ions  of  T h e o r e m  A 

Below S is assumed to be locally compact and second countable. The first result 

of this section is an immediate consequence of Theorem A. 

PROPOSITION 4.1: Suppose S is locally compact and second countable. Let ~o 

be a random closed set in S, and take F E Jr. Then F C_ ~o a.s. if, and only if, 

~ N G ¢ O a.s. for all a E ~ with F M a # o. 

We next look at the thinning result for simple point processes. However in a 

larger generality. We see S together with its Borel sets (i.e., the a-field generated 

by ~) as a measurable space. Locally finite measures (i.e., measures # satisfying 

#(G) < oo for all relatively compact G E ~) are discussed in Norberg [13]. See 

also below. For simplicity, we treat now only the Hausdorff case. 

Definition 4.2: Let/~ be a locally finite measure on S. The set 

s u p p # = { s E S : s E G E ~ = ~ # ( G ) > 0 }  

is called the s u p p o r t  of/~. I 

PROPOSITION 4.3: Suppose S is locally compact, second countable and Hans- 

dorff. Let l~ be a locally finite measure on S. Then supp/.t E .T, and, for all 

G E 6, supp/~ cl G 7 ~ 0 if, and only if, I~(G) > O. 

Proof." Let s E (supp #)¢. Then there is a G E G with s E G satisfying #(G) = 0. 

That G C (supp #)¢ is a triviality, so we must have (supp #)¢ E ~. We further- 

more conclude from the fact that S is second countable, that #((supp #)¢) = 0. 

I 

Let ( be a random measure in S. Proposition 4.3 shows that supp ~ is a random 

closed set. This proposition combined with Theorem A now immediately yields 

the following result. 
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THEOREM 4.4: Suppose S is locally compact, second countable and Hausdorff. 

Let ~ and ~ be random measures in S. Then supp ( C_st supp t 1 if, and only if, 

P N { ( ( G i )  > 0} _< P N{r/(Gi) > o} 
i i 

whenever {GI} is a l~nlte collection o/. open sets. 

The existence result for so called realizable thinnings of simple point pro- 

cesses in locally compact second countable Hausdorff spaces mentioned in the 

introduction is of course a simple particular case of Theorem 4.4. There is no 

need for any details. 

Following Artstein [1], we make the following definition. 

Definition 4.5: Let q0 a random closed set in S. We say that a probability meas- 

ure/~ on S is se l ec t ionab le  w.r.t. (the distribution) of ~ (or ~ - se lec t ionab le  ) 

if there exist on some probability space a random element ~, distributed accord- 

ing to/~, and a random closed set ~, with the same law as ~, such that ~ E q3 

a.s. | 

That is, a random element ~ in S has a ~¢-selectionable distribution if, and 

only if, ~ Est ~. The next result is due to Artstein (op. cit.) for Hausdorff-S and 

extended to all Hausdorff regular spaces by Ross [17]. 

THEOREM 4.6: Suppose S is 1ocM1y compact, second countable and sober. Let 

p be a probability measure on S and let ~ be a random closed set in S. Then tz 

is ~-selectionable if, and only if, 

(4) /~(B) _< P{~  N B # 0} 

holds true t'or all B E G, if, and only if, it holds true t'or a/1 B E sat K:. 

Proof: If # is T-selectionable, then, clearly, (4) holds for compact saturated 

sets. But then it holds for open sets, too, as the reader easily sees. So assume 

(4) true for all B E ~. Let ~ be a random element in S with distribution/~. Put  

¢ = {~}-. Then ¢ O G ¢ 0 if, and only if, ~ E G, for G E ~, so ¢ is a random 

closed set. Let G1, . . . ,  G ,  E G. By assumption, 

PN(  n a, o) = P(¢  Na,) <_ P ( v n N a ,  # o} < PN{v n G, # 0} 
i i i i 
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and ¢ Cst ~ follows by (a) of Theorem A. That is, there is a coupling (¢, ~) of ¢ 

and ~0 satisfying ~ C ~ a.s. Now ~ d= ¢, so ¢ is a.s. non-empty and irreducible. 

By sobriety, there is a random element ~ in S, satisfying {~}- = ¢. Then ~ e ¢, 

so ~ ~ ~a a.s. I 

Det~nition 4.7: Suppose S is To. Let s, t  E S. We write s _< t is s E {t}-. This 

relation on S x S is called the order  of  specialization. I 

Clearly s < t if, and only if, {s}- C_ {t}-, showing that the order of special- 

ization is a partial order on S if S is To. Here is the result from which Strassen's 

Theorem B follows. Note that it says nothing in the Hausdorff case. 

PROPOSITION 4.8: Suppose S is locally compact, second countable and sober, 

and let ~ and 71 be random dements in S. Then ~ <_st q if, and only if, the 

inequality 

P{~ E B} < P{q E B} 

holds true for all B E G, if, and only if, it holds true t'or M1 B E sat/C. 

Proof: If the inequality holds true for all B E G, then, by Theorem 4.6, ~ Est 

{7}- and ( _<st 77 follows by sobriety (argue as in the proof of Theorem 4.6). 

The remaining equivalence is straightforward. | 

More can be said in cases where we have good knowledge of the collections 

and/or sat/C. For instance when a convenient base for the topology is given. 

We now consider an important example. 

By Lawson [8, Proposition 5.2], the Scott topology makes any continuous 

poset L locally compact, sober. Moreover, the Scott topology is second count- 

able if L is countably based (cf. Norberg [13, Proposition 3.1]). It is easy to see 

that the original order on L coincides with the specialization order. 

THEOREM 4.9: Let ~ and 71 be random variables in a countably generated con- 

tinuous poser L. The following three statements are equivalent: (a) ~ _<st r/; (b) 

the inequality 
n n 

P{(  e U Fi} <_ P{~ e U Fi} 
i = l  i = l  

holds true for n = 1,2,.. .  and Fi E OFilt L; and (c) the inequa/ity 
n n 

P U x, <_ _< P U{x, <_ 
i = l  i = 1  
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holds true for n = 1, 2,. . .  and xi E L. 

Proof: The equivalence between (a) and (b) follows at once from Proposition 

4.8, and the fact that OFilt L is a base for the Scott topology (see Lawson [8, 

Proposition 2.3]). That (a) implies (c) is obvious, so we need only consider the 

implication from (c) to (b). This however is a straightforward consequence of the 

fact that whenever F E OFiltL,  there are xl ,x2 , . . .  E L such that x,,+l << xn 

for all n, and (Tx,,) 1" F. This follows by Lawson [8, Propositions 2.2 and 2.4], 

since L is countably based. | 

We next apply Theorem 4.9 to random capacities. 

Definition 4.10: By a random capacity on S we shall mean a stochastic process 

~, indexed by G E 9 and taking values in [0, oo], satisfying with probability 

one the following three conditions: (i) ~(0) = 0; (ii) ( (G, )  < ~(G2) whenever 

G~,G2 E 9, G~ c G2; and (iii) ~(G,)  ~ ~(G) whenever G~,G2,... E 9, G, T 

G. I 

This approach to random capacities extends Norberg [12], in which S in addi- 

tion is assumed to be Hansdorff. We proceed to show that the random capacities 

on S are random variables in a continuous lattice of capacities. 

Definition 4.11: Call c : G ~ [0, oo] a capac i ty  on S, if c is increasing, c(0) = 0 

and c ( a . )  T as a .  T a .  t 

The collection of all capacities will be denoted C. We order C by letting cl < c2, 

if cl(G) < c2(G) for all G E 9. Gierz et al. [4, Theorem I1.2.8] show that C is a 

continuous lattice. That C is countably based is easy to see. Cf. also Norberg 

and Vervaat [14, Section 6]. 

Whenever c E C, we put 

c(K) = inf{c(a) : a 9, a K} 

for K E/C. It is clear that c(K) = c(sat K),  so we may just as well restrict the 

above definition to sat K:. It is easy to see that 

c(G) = sup{c(K):  K E sat L:, K C_ G} 

for G E 9. 
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By definition a C-valued mapping ( is measurable if, and only if, the event 

{c _< ~} is measurable for all c E C. We now show that this holds if, and only if, 

~(G) is measurable for all G e ~. 

PROPOSITION 4.12: Let ~ be a C-valued mapping defined on a probability space. 

Then ~ is a random capacity if, and only if, ~ is a random variable in C. 

Proof." We have already noted that we may assume without loss of generality 

that ,5' is sober. F i x x _ >  0. T a k e K  E sat/C. Let cK(G) = x i f K _ C  G, = 0 

otherwise. Then CK E C and, moreover, cg <_ ~ if, and only if, x _< ~(K). 

This shows that if ~ is a random variable in C, then ~(K) is a random variable 

for all K E sat E. It is easy to see that this implies that ~(G) is a random variable 

for all G E 9. 

To see the converse, assume ~(G) is a random variable for all G E 9. Fix 

c E C. If c(G) <_ ~(G) for all G E Gb, where gb is a base for the topology which 

is closed for finite unions, then c <_ ~. (This is obvious.) Hence the event {c < ~} 

is measurable. | 

We next look at some special types of capacities. 

Definition 4.13: We call c E C local ly  f inite,  if c(G) < oo whenever G E 9, 

G _C K for some K E K;, i.e., is relatively compact. A locally compact c E C is 

called m o d u l a r ,  if 

c(G~ U G~) + c(G~ n G2) = c(G~) + c(a~) 

for all relatively compact G1, G2 E g. I 

Norberg [13] shows that a locally finite capacity on S extends to a unique 

locally finite measure if, and only if, it is modular. 

Definition 4.14: By a sup measure  we mean a c E C satisfying 

c(G  u a2) = c(a ) v c(G ) 

for all G1, G~ E g. I 

Vervaat [20] shows that any sup measure c can be represented by a unique 

upper semicontinuous function g in the following way: c(G) = supsca g(s) for 

G E ¢. The function g is given by g(s) -- infj~o~¢ c(G) for s E S. 
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Definition 4.15: A random capacity is called locally f ini te  or mo d u l a r )  if 

it is so a.s. A locally finite modular random capacity will be referred to as a 

r a n d o m  m e a s u r e .  An e x t r e m a l  p rocess  is a random capacity which a.s. is 

a sup measure. | 

Note that the notion of the support of a measure (see Definition 4.2) easily 

extends to capacities in locally compact, second countable and sober spaces. 

Proposition 4.3 is still true (with a c E C instead of #), and Theorem 4.4 extends 

to random capacities ~ and q in such a space. (The same proofs works.) 

The next theorem is our extension of Rolski and Szekli's [16, Theorem 1] 

coupling result for random measures, which we mentioned in Section 1.. In 

order to understand it we point out that [0, oo] n is continuous relative to the 

coordinatewise order and emphasize that if ~ is a random capacity, then the 

evaluation (((G1), . . .  ,~(G,,)) is a random variable in [0, oo] n for every n = 

1, 2 , . . .  and G1 , . . . ,  Gn E G. (It is a nice exercise to apply Theorem 4.9 to the 

case L = [0, oo] n for a fixt n = 1, 2 , . . . )  

THEOREM 4.16: Let S be locally compact, second countable and sober. Con- 

sider two random capacities ~ and ~ on S. Then ~ <st rl if, and only if, 

<,, 

for every n = 1, 2 , . . .  and Gi E ~. I f  S happens to be sober, this holds if, and 

o ly if, 

for every n = t , 2 , . . ,  and Ki E sat/~. 

COROLLARY 4.17: We have ~ a ~ if, and only if, 

(~(G1),. . .  ,~(Gn)) d (r/(G1),... ,~ (G, ) )  

for every n = 1 ,2 , . . .  and Gi E ~. 

Proofs: The corollary follows of course from the fact that ~ d = ~? if, and only if, 

_<st r /and ~/_<st (, and a similar fact for random vectors. 

The only if part of the theorem follows from the fact that if (~, 7)) is a cou- 

pling of ~, r/, then so related is the 2n-dimensional vector ((~(Gi)), (~(Gi)) to 
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((~(Gi)), (r/(Gi)). To see its if part, prove that 

n n 

PU{e, -< _< PU{c, _< 
i = 1  /----I 

for arbitrary ci E C (ef. Theorem 4.9). Argue as in the proof of the corresponding 

part of Proposition 4.12. I 

Example 2: Consider for S the non-negative extended reals [0, oo] with the so 

called lower topology, whose non-trivial open sets are the intervals of the form 

[0, s) for s > 0. (This is a locally compact second countable sober space.) Any 

capacity c on [0, oo] can be identified with a right continuous increasing function 

g:  [0, oo) ~ [0, oo], defined by writing g(t) = c([0, t]) for t >_ 0. (Note that [0, t], 

for t >_ 0, is compact saturated and that there are no other compact saturated 

sets than these.) Similarly, random capacities on [0, oo] can be identified with 

right continuous increasing (random) processes. 

Let ~ and r/be two right continuous increasing processes on [0, oo). We may 

conclude by Theorem 4.16 that ~ _<st ~ if, and only if, 

~ t l , . . . ,~ t .  ~st ~Ttx,...,77t, 

holds true for n = 1, 2 , . . .  and ti _> 0. 

Kwiecinski and Szekli [7] have given a sufficient condition for ~ _<st r / in  the 

case when ~ and r/are counting (i.e., distribution) functions of two simple point 

processes on [0, c~). Their condition is stated in terms of the compensators of 

and 77. II 

For the remaining part of the section, take S locally compact, second count- 

able and sober. By Hofma~n and Mislove [5, Section 2], the collection sat K: is 

a continuous semi-lattice w.r.t, the exclusion order. Conclude by Norberg [13, 

Proposition 3.1] that sat K: is countably based. 

Det~nition 4.18: By a r a n d o m  c o m p a c t  s a t u r a t e d  set in S, we mean a 

mapping T from some probability space inte the collection sat)(:, such that 

{T N F ~ ~} is measurable for all F E .T. | 

The next result follows at once by the remark preceding the above definition. 

So there is no need for a proof. 
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PROPOSITION 4.19: Let S be locally compact, second countable and sober. Let 

be a sat E-valued mapping, detlned on some probability space. Then ~ is a 

random compact saturated set if, and only if, {~ C K} is measurable for all 

K E sat E. 

That is, any random compact saturated set is a random variable in sat E, 

and vice versa. The next theorem is a corollary to Theorem 4.9. We omit the 

obvious proof. 

THEOREM 4.20: Let S be locally compact, second countable and sober. Let ¢ 

and ~ be random compact saturated sets in S. The following three statements 

are equivalent: (a) ¢ _C,, ~; (b) the inequality 

n n 

P N{¢ n F, # ~} < P N{~ n F, # ~} 
i = 1  i = 1  

holds true for n = 1, 2, . . .  and Fi E .7:; and (c) the inequality 

n Irl 

P U {  ~ C_ K,} _< P U { ¢  C_ K,} 
i = l  i = 1  

holds true for n = 1~2,... and Ki E satE. 

The following corollary is immediate. It extends Artstein [1, Theorem 2.1] 

giving necessary and sufficient conditions for the existence of probability distri- 

butions, which are selectionable w.r.t, a given random compact set in a complete, 

separable metric space. 

THEOREM 4.21: Let S be locally compact, second countable and sober. Let 

be a random element and ~ a random compact saturated set in S. Then the 

following three statements are equivalent: (a) ~ E,t ~; (b) the inequality 

P{~ E F} <_ P { ~ A F  ~ 0} 

holds true for F E ~; and (e) the inequality 

p{~ c K} < P{~ e K} 

holds true for K E sat E. 
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5. Strassen's Theorem 

We first show how Strassen's Theorem B follow from Proposition 4.8. So let X 

be a compact Polish space endowed with a partial order with a closed graph. 

Fix two random elements ( and t / in  X. It is clear that if ~ <st T/, then 

(5) P { ( E  U} < P{7/E U} 

holds for open upper U C_ X. Every lower semicontinuous increasing function 

on X is a pointwise limit of an increasing sequence of continuous increasing 

functions. So (5) follows if 

Eh(~) <_ Eh(tl) 

holds true for all non-negative continuous, increasing functions h on X. 

The open upper sets in X form a topology on X, called the u p p e r  topology. It 

is known that X is locally compact, second countable and sober in this topology. 

Cf. Gierz et al. [4, pp. 312-313], but see also the discussion in Lawson [9]. The 

specialization order on X coincides with the original order. This is easy to see. 

Proposition 4.8 now tells us that (5) for open upper U C_ X, also is sufficient 

for ~ _<~t 71. 

We conclude this section (and the paper) by giving a proof, that does not 

appeal to Strassen's Theorem B, of a particular case of Theorem 4.9, from 

which Theorem A is an immediate consequence. 

PROPOSITION 5.1 : Let ~ and T I be two random variables in a countably gener- 

ated continuous lattice L. Then ( <_st tl if, and only if, 

.P U{x  -< ,'} _< .P _< ,1} 
i=1 i=1 

holds true for n = 1, 2 , . . .  and xl 6 L. 

Proof." The necessity is obvious. To see the sufficiency, take finite sets Q1 c 

Q2 c . . .  c_ L, such that Q = U ,  Q,, is separating in the sense that,  if x << y, 

then there is some z E Q with x < z < y. (Cf. Definition 2.11.) Put  

~. = V { z  • Q . : z  <_ ~}. 

Then ~1 --< ~2 --< " ' "  --< ~" Suppose x << ~. Then x < y < ~ for some y E Q = 

U,, Q,,. Thus z _< ~,~ for some sufficiently large n, and ~,, T ~ follows. 
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Note that ~,, is a random variable in L. This follows from 

{~-<~-}=U U {~,-<~,.-.,~-<~}, 
,,~ < , r  i V - , ,V , l ~  m 

where the inner union is over ( x l , . . . ,  x,,,) E Q~. 

Next note that ~7/is a random Scott closed subset of L, since ~T/= {T/}- in 

the Scott topology and {IT/n U # 8} = {I/E U} for U E Scott L. By arguing 

as in the first paragraph, we see that there are simple random Scott closed sets 

Ca, ¢2 , - - - i n  L such that ¢ ,  I (~r/). 

Fix n. Let D be the set of all pairs (F,z) such that F is in the range of ¢,,, z 

is in the range of ~,, and x E F. For subsets X of the range of ( , ,  write 

Dx = { F :  (F, z) E D for some x E X} .  

Then, writing X = {zi}, 

P{~. ~ x}  = PU{~- = ~,} -< PU{  ~, <- ~,,} 
i i 

_< PU{~, _< ~} _< PU{~, _< ,} 
i i 

= PU{~, ~ , }  < PU{=, ~ ¢ . }  = P { ¢ .  ~ Dx}. 
i i 

^ ^ 

By the Allocation Lemma of Pollard [15], there is a coupling ((,,, ¢,,) of (,, and 

¢ , ,  satisfying (~,,, ¢,~) E D, i.e., ~, E ¢,,. 

The Lawson topology on L is compact Polish (Gierz et al. [4, p. 146]). The 

Scott topology on L is locally compact, second countable and sober (Lawson [8, 

Proposition 5.2]). Hence Fell's topology on the collection of Scott closed sets in 

L is compact Polish (cf. Proposition 3.5). Thus the pairs (~,,, !b,,) are random 

dements  in a compact Polish space, so there is a subsequence (~,,k, ¢,,k) which 

converges in distribution to some random element (2, ¢). It is clear that ~ a__. 

and ¢ a ~r/, so we have here a coupling of ~ and It/. By sobriety, there is a 

random variable ~ in L, satisfying ¢ =~6. Clearly, 7) d 

Let x e L and take F C_ L Scott closed. Then x E F if, and only if, ~z C_ F. 

The graph of C_ is closed. Hence so is the graph of E. By the Portmanteau 

Theorem (see e.g. BiUingsley [21) , 

P{~ < 7)} = P{~ EJ.6} = P{~ E ¢} _> l imsupP{~, ,  E ¢,,,} = 1. 
k 
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Hence ~ --<st q. 
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